Chi Square Statistics  Hobart and William Smith Colleges
pvalue0.05, do not reject the null hypothesis,taking the drug can’t reduce the time to overcome jet leg
Chi Square P Value Excel: Easy Steps, Video
Compare your answer from step 4 with the α value given in the question. Should you support or reject the null hypothesis?
If step 7 is less than or equal to α, reject the null hypothesis, otherwise do not reject it.
A related criticism is that a significant rejection of a null hypothesis might not be biologically meaningful, if the difference is too small to matter. For example, in the chickensex experiment, having a treatment that produced 49.9% male chicks might be significantly different from 50%, but it wouldn't be enough to make farmers want to buy your treatment. These critics say you should estimate the effect size and put a on it, not estimate a P value. So the goal of your chickensex experiment should not be to say "Chocolate gives a proportion of males that is significantly less than 50% (P=0.015)" but to say "Chocolate produced 36.1% males with a 95% confidence interval of 25.9 to 47.4%." For the chickenfeet experiment, you would say something like "The difference between males and females in mean foot size is 2.45 mm, with a confidence interval on the difference of ±1.98 mm."
Support or Reject Null Hypothesis in Easy Steps
Use the pvalue to determine whether to reject or fail to reject the null hypothesis, which states that the population proportions in each category are consistent with the specified values in each category.
One of the main goals of statistical hypothesis testing is to estimate the P value, which is the probability of obtaining the observed results, or something more extreme, if the null hypothesis were true. If the observed results are unlikely under the null hypothesis, your reject the null hypothesis. Alternatives to this "frequentist" approach to statistics include Bayesian statistics and estimation of effect sizes and confidence intervals.
Pearson's chisquared test  Wikipedia
There are different ways of doing statistics. The technique used by the vast majority of biologists, and the technique that most of this handbook describes, is sometimes called "frequentist" or "classical" statistics. It involves testing a null hypothesis by comparing the data you observe in your experiment with the predictions of a null hypothesis. You estimate what the probability would be of obtaining the observed results, or something more extreme, if the null hypothesis were true. If this estimated probability (the P value) is small enough (below the significance value), then you conclude that it is unlikely that the null hypothesis is true; you reject the null hypothesis and accept an alternative hypothesis.
We would notreject our hypothesis, since is greater than0.05 (that is, >0.05).
You should note that many statistical packages for computerscan calculate exact values for chisquare distributedtest statistics.
The top row shows the pvalue in question

ChiSquare Test of Independence
A description of how to use the chi square statistic including applets for calculating chi square values.

ChiSquare Independence Testing  Real Statistics Using …
Summary

i should accept or reject the null hypothesis ..
pvalue  Wikipedia
So failing to reject the null hypothesis is ..
Mannan and Meslow (1984) studied bird foraging behavior in a forest in Oregon. In a managed forest, 54% of the canopy volume was Douglas fir, 40% was ponderosa pine, 5% was grand fir, and 1% was western larch. They made 156 observations of foraging by redbreasted nuthatches; 70 observations (45% of the total) in Douglas fir, 79 (51%) in ponderosa pine, 3 (2%) in grand fir, and 4 (3%) in western larch. The biological null hypothesis is that the birds forage randomly, without regard to what species of tree they're in; the statistical null hypothesis is that the proportions of foraging events are equal to the proportions of canopy volume. The difference in proportions is significant (chisquare=13.59, 3 d.f., P=0.0035).
ChiSquare Test of Independence and an Example
In neither case would we be inclined to reject our hypothesis.
We can repeat the chisquare goodnessoffit test for the larger sample size (4,865 heads/8,135 tails).
you can reject the null hypothesis and infer that ..
So, you might get a pvalue such as 0.03 (i.e., p = .03). This means that there is a 3% chance of finding a difference as large as (or larger than) the one in your study given that the null hypothesis is true. However, you want to know whether this is "statistically significant". Typically, if there was a 5% or less chance (5 times in 100 or less) that the difference in the mean exam performance between the two teaching methods (or whatever statistic you are using) is as different as observed given the null hypothesis is true, you would reject the null hypothesis and accept the alternative hypothesis. Alternately, if the chance was greater than 5% (5 times in 100 or more), you would fail to reject the null hypothesis and would not accept the alternative hypothesis. As such, in this example where p = .03, we would reject the null hypothesis and accept the alternative hypothesis. We reject it because at a significance level of 0.03 (i.e., less than a 5% chance), the result we obtained could happen too frequently for us to be confident that it was the two teaching methods that had an effect on exam performance.
For a Chisquare test, a pvalue …
This number, 0.030, is the P value. It is defined as the probability of getting the observed result, or a more extreme result, if the null hypothesis is true. So "P=0.030" is a shorthand way of saying "The probability of getting 17 or fewer male chickens out of 48 total chickens, IF the null hypothesis is true that 50% of chickens are male, is 0.030."