Call us toll-free

Comparing Prokaryotic and Eukaryotic Cells | Biology I

Comparing Prokaryotic and Eukaryotic Cells

Approximate price


275 Words


Compare and contrast DNA synthesis in prokaryotes and eukaryotes

I. Introduction to Genetics
A. Identify important people and events in the history of genetics.
B. Define the main areas of genetics such as molecular genetics,
transmission genetics and population genetics.
II. Cellular Basis of Structure and Growth
A. Compare Prokaryotic Cells and Eukaryotic Cells.
B. Review reproductive and development processes.
1. Compare the processes and significance of mitosis and meiosis.
2. Define development: growth and differentiation.
III. Mendelian Genetics: Basic Principles of Inheritance
A. Discuss Mendel's research on pea plants.
1. Solve problems involving dominant and recessive traits using Punnett Squares.
2. Apply Mendel's Laws of Dominance, Segregation and Independent Assortment.
B. Apply basic probability concepts to solve genetics problems.
C. Solve problems involving multiple alleles to include human blood groups.
D. Solve problems involving polygenic inheritance.
E. Calculate gene frequencies using the Hardy-Weinberg Law.
IV. Human Genetics
A. Analyze pedigree diagrams.
1. Recognize pedigree symbols.
2. Calculate simple probabilities related to pedigree analysis.
3. Analyze autosomal pedigrees of recessive inheritance.
4. Analyze autsomal pedigrees of dominant inheritance.
5. Analyze pedigree of sex-linked traits.
B. Describe the outcomes of genetic counseling.
C. Use online and library resources related to human genetics.
V. Human Sexuality
A. Review the female reproductive system and make reproductive systems.
B. Compare spermatogenesis in the male with oogenesis in the female.
C. Compare development of male and female genotypes.
D. Describe genetic sexual disorders, including:
1. Single gene disorders, such as pseudohermaphroditism and testicular pominization and chromosomal disorders, such as
a. Turner's Syndrome
b. Klinefelter's Syndrome
c. XYY Males
VI. Reproductive Technologies and Choices
A. Describe birth technologies, such as:
1. Artificial insemination
2. Surrogate motherhood
3. In-Vitro fertilization
B. Describe prenatal diagnosis, including:
1. Amniocentesis
2. Chorionic Villus sampling
C. Compare different bioethical considerations related to new reproductive technologies and choices.
VII. Informational Macromolecules
A. Review the chemistry of amino acids, proteins and enzymes.
B. Describe and discuss DNA, and the following functions of genetic material:
1. Transformation
2. Transduction
3. Structure and replication of DNA
C. Describe RNA and protein synthesis to include:
1. Messenger and Transfer RNA
2. Protein synthesis
D. Illustrate the basic mechanisms of gene expression in both prokaryotes and eukaryotes.
VIII. Variation
A. Discuss examples of genetic variation, including:
1. Dominance and recessiveness (Phenylketonuria)
2. Expressivity (Diabetes)
3. Penetrance (Polydactyly)
4. Delayed Onset (Huntington's Chorea)
5. Co-Dominance (Human Blood Groups)
6. Epistasis (Congenital Deafness)
B. Discuss examples of variation caused by environment.
IX. Mutations
A. Describe different chromosomal mutations, including:
1. Deletions
2. Duplications
3. Inversions
4. Translocations
5. Downs Syndrome
B. Describe types of gene mutations, including:
1. Point mutations
2. Frameshift mutations
3. Spontaneous mutations
4. Causes of mutations
C. Discuss the genetic basis of many cancers including the role of:
1. Oncogenes
2. Tumor suppressor genes
3. Chemical mutagens/carcinogens
4. Radiation and other environmental factors
X. Genetic Engineering and Biotechnology
A. Describe the main application areas of biotechnology in medicine, agriculture and other areas of society.
B. Describe basic techniques used in recombinant DNA.
C. Explain the basic principles behind the technologies involved in gene amplification and sequencing.
D. Discuss ethical considerations of new technologies.
XI. Laboratory and Research Skills
A. Demonstrate familiarity with the use of online biotechnology resources.
B. Identify basic modes of Mendelian inheritance in selected species.
C. Demonstrate basic techniques for staining and studying chromosomes.
D. Use appropriate statistical and quantitative techniques such as chi-square
tests in hypothesis testing.
E. Demonstrate principles and proper techniques associated with modern genetic tools such as electrophoresis, and DNA amplification.
F. Critically interpret information obtained using modern genetic techniques.
G. Demonstrate elementary techniques associated with the use of key experimental organisms in modern genetic analysis and biotechnology such as bacteria, yeast and Drosophila.
H. Use appropriate laboratory safety skills and sterile technique.

The aim of this essay is to compare and contrast the genomes in eukaryotes and prokaryotes ..

In prokaryotic cells, all the metabolic pathways occur in the cytoplasm, except for chemiosmosis and oxidative phosphorylation, which occur on the plasma membrane. Prokaryotic cells are capable of anaerobic respiration using alternative electron acceptors such as nitrate and sulfate, although they prefer oxygen as the terminal electron acceptor to drive chemiosmotic ATP synthesis. In the absence of any suitable electron acceptor, they use fermentation pathways.

Prokaryotes Vs Eukaryotes in Protein synthesis

23/11/2008 · Compare and contrast DNA replication and protein synthesis

Further evidence to support the endosymbiont theory is that mitochondria have their own DNA, in the form of a circular chromosome that is topologically like bacterial chromosomes. The sequence of the mitochondrial DNA most closely resembles the sequences of genes in alpha-proteobacteria. Mitochondrial ribosomes are structurally more similar to bacterial ribosomes than to eukaryotic ribosomes. Mitochondria reproduce in eukaryotic cells by fission, again resembling bacterial cell division.

How is protein synthesis similar to the catalysis of a reaction by an enzyme? Protein synthesis is a series of chemical reactions in which molecules are brought. Video computer games, virtual labs and activities for learning and reviewing biology. Topics Covered Protein synthesis, transcription, translation, amino acids.

Ribosomes - Protein Synthesis - Cronodon

Compare protein synthesis in prokaryotes and eukaryotes. • Discuss the different types of point mutations and their affect on the function of a protein.

Protein Synthesis. Molecular events required to generate a. Covers the steps in the process of protein synthesis. Transcription and Translation. VIDEO. What kind of cells are you made of and how do these cells make protein? In this lesson, we will answer these questions through an investigation. Lyrics. Look at what's coming out of the nucleus. Destined for a ribosome, a strand of mRNA. It's got the code, the information, For the protein we'll be making.

Translation is one stage of protein synthesis in which messenger ribonucleic acid (mRNA) acts as a template for the synthesis of a polypeptide chain; it consists of four phases: initiation, elongation, termination and ribosome recycling. Initiation of protein synthesis, entailing ribosomal recognition of the mRNA start codon and the setting of the correct reading frame, is the rate‐limiting step of translation and the main target of translation regulation in all cells. However, the mechanism and molecular machinery for initiation have diverged in the primary domains of life: the Bacteria, the Archaea and the Eukarya (eukaryotes). In bacteria, translation initiation is relatively simple, whereas in eukaryotes, it is complex and requires more components. In archaea, despite their prokaryotic phenotype, the machinery for protein synthesis initiation is much more elaborated than in bacteria and presents intriguing similarities with the corresponding eukaryotic process. The features of translational initiation in archaea, bacteria and eukaryotes are reviewed, highlighting the divergent and common aspects of this important cellular process in the three domains of life.

This gene encodes the light subunit of the ferritin protein. Ferritin is the major intracellular iron storage protein in prokaryotes and eukaryotes.
Order now
  • Biological Molecules - You Are What You Eat: Crash …

    any organism having cells in each of which the genetic material is in a single DNA chain, not enclosed in a nucleus

  • LabBench Activity Plant Pigments and Photosynthesis


  • Chapter 4 Cell Structure study guide - Biology Junction

    06/01/2018 · The Domain Archaea wasn't recognized as a major domain of life until quite recently

Order now

PEG10 Gene - GeneCards | PEG10 Protein | PEG10 …

A ribonucleoprotein is a structure consisting of protein and RNA (ribonucleic acid).

In prokaryotes, the cytoplasm surrounding the nucleoid is rich in risosomes (and is called the riboplasm) - in bacteria proteins that
make up the ribosome are the most abundant proteins in the cytosol.

In eukaryotes ribosomes can exist free in the cytosol or bound to endoplasmic reticulum (forming rough endoplasmic reticulum, or
RER, so-called because the ribosomes stud its outer/cytosolic surface).

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order